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Abstract 

We derive a very simple expression for the total decay rate ofan unstable particle analogous 
to the optical theorem, and demonstrate its equivalence with the total decay rate defined 
in terms of the imaginary part of the l~ropagator pole. The common origin of mass shifting 
and total decay rate is also demonstrated. 

I. Introduction 

In this paper, we would like to derive a very simple relation for the total 
decay rate o f a n  unstable particle analogous to the epticai theorem. We will 
show that this relation is identical with the total decay rate defined in terms 
o f  the imaginary part of  the propagator pole to second order in the coupling 
constant, in the case of  the Lee model with unstable V-particle and for 
unstable spin 0 arid spin 1/2 particles with arbitrary interactions. The 
common origin of  mass shifting and total decay rate will also be demon- 
strated. We work within the context of  quantum field theory and use 
Feym'nan diagram methods. Natural units (h = c = 1) are used throughout 
the paper 

2. Definition of  Total Decay Rate of  Unstable Particle in 
Terms o f  Time-Rate Change of  Decay Probability 

Consider a system described by a unitary 5'-matrix S. Define the T-matrix 
as follows: 

s ~  ! + iT (2.D 

Unitarlty o f  the A-matrix implies that 

r* T ~. i(T* - 73 (2,2) 

t Work supported in part by grants from the Research Foundation of the State of 
New York and the National Science Foundation. 
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where * denotes hermitian conjugation. Let Ip;a~ be an unstable single 
particle state.'[' The totaldecay probability of this state in time T is 

P (E;a )  = l - I<P;al Slp;a>l" (2.3) 

The second term on the right-hand side of  this relation is simply the 
probability that the particle has not decayed. To see how the time r occurs 
in equation (2.3), one should think of S as replaced by the time development 
operator U(r]2, -~-/2) with the limit r ~ ~o implied at the end of the 
calculation. This procedure is quite common in the Dyson-Feynman 
treatment of  perturbation theory which we are invoking (Schweber, 1961). 
We would also like to make the following remarks concerning the definition 
of  the state Ip;a>. Since, as stated in Section !, we work in the context of  
perturbation theory and use Feynman diagram techniques, this method 
requires us in general to invoke the adiabatic hypothesis. This hypothesis in 
turn implies that the state Ip;a> is simply an eigenstate of the unperturbed 
Hamiitonia~: One can justifiably ask whether invoking the adiabatic 
hypothesis is appropriate in the description of  an unstable particle state 
which is not a stationary state. Our answer to this is in the affirmative, for 
the following reasons. If  we restrict ourselves to lowest-order perturbation 
theory and calculate P(E;a)  to second order in the coupling constant, then 
to this order Ip;a) is precisely the unperturbed state. As shown by L~vy 
(1959), the total decay rate of an unstable particle is only well defined to 
second order in the coupling constant, and there isan intrinsic uncertainty 
which is of  the fourth order. Because of  this, we shall limit our calculations 
to second order in the coupling constant. To this order, the use of the 
unperturbed state for ]p;a7 is legitimate, and in fact exact.:]: Substituting 
equation (2.1) into relation (2.3) we find that 

P ( E ; a )  = 2 lm (p;al  Tip;a> - I<p;al Tip;a>[ 2 

=~-2Re<p;a]S-  l ip;a>-I<p;alX-  llp;a>l" (2.4) 
Relation (2.4) can also be derived in a slightly different way starting from 

P ( E ; a )  = ~>~D,> I</I TIp;a>I 2 

�9 =)~ <P;alT*lf><.flTIP;a>-l<P;alTIP;a>l 2 (2.5) 

The summation is over a complete set of  states If'>. Using the completeness 
relation I f ) < / I  = 1, together with equation (2.2), one easily checks that 
equations (2.4) and (2.5) are identical. 

Since we are working to second order in the coupling constant we can 
drop the term [<p;alTIp:a>12 in equation (2.4), since the lowest-order 

t P  - (Ip, tE) is the 4-momentum of the state and a stands/or any other quantum 
numbers required for its identification (a may simply be, for example, the given name of the 
particle or reaonance). 

~: The use of the adiabatic hypothesis in calculating decay rates to second order in the 
coupling constant is quite common in the literature. 
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contribution to it is the fourth..~ To second order in the coupling constant 
we can therefore write 

P(E;a) = 21m~p;a[Tl p ; a) (2.6) 
= - 2  Re ~ ; a [ S -  1 [ p;a> 

We now define the total decay rate of  the state Ip;a) as** 

/'(E;a)-- ~e(E;o) (2n) 
Combining equations (2.6) and (~7)  ~e  find that 

l'(E;a) -- 21m,fp;a[T l  p;a) 

=--2Re~p;~Is- qp;a> (2.8) 
T 

This result is correct to second order in the coupling constant. 
Equation (2.8) shows that the total decay rate is completely determined 

by lm ~p:alTJ p;a).  This is exac~b" a,aalogous to the optical theorem, which 
relates the total cross-section for sca~Eering of  two particles a and b in the 
state Ip,,a;pb, b) to lm <p,,a;p~.b~T~ p,,a;p~,b). [In a similar way, it is quite 
easy to see that the total reaction (or interaction) probability for scattering 
of  N particles is simply related to lm ~p,,a~ . . . . .  p.s, as[T[ p,,a~ . . . . .  ps,as).] 

It would seem that the definition (~7), and therefore also relation (2.8), 
is only well suited for unstable par'deles ghose decay rates can be measured 
directly by observing the number of  particles that have decayed after a 
certain time has elapsed. We sha.q later in the paper present arguments 
which make it feasible to adopt relation (2.8) also for hadron resonances 
which do not satisfy such a criter/on. 

Relation (2.8) is extremely interesting, since it represents a total decay 
rate and therefore includes both dynamic and kinematic effects. Another 
very attractive feature is its simplic/Lv. In the next section we will show tha! 
relation (2.8) coincides with the total d~-x'ay rate defined in terms of  the 
imaginary part of the propagator pole to second order in the coupling 
constant. Wc w,i! demonstrate this in the case of the Lee model with unstable 
V-particle, and for unstable spin 0 and spin !/2 particles with arbitrary 
interactions. 

3./lpplications 

A. The lee  Model with Unstable V-Particle 
The Lee model with unstable t~particle (Glaser & K~llen, 1957) is 

particularly well suited for our purpose, since Vcan only decay into Nand  

f This will be. quite amply demonstrated in the applications of Section 3. 
:~ When one calculates P(E;a) to second order in the coupling constant using the 

Dyson-Fcynman perturbation method one finds that it is linear in r (Schwa:bet. 1961). 
This will be demonstrated in the applications of Section 3. As a result, F(E;a) defined by 
relation (2.7) is independent ofT. 
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O so that partial and total decay rates are identical. In this way, it is quite 
easy to test relation (2.8) directly by calculating the decay rate of V -,. NO, 
and comparing the result with the right-hand side of relation (2.8). This will 
be done using conventional Fe)~man diagram techniques, and carried out 
to second order in the coupling constant. 

The Lee model Hamiltonian is (Glaser & K:~llen, 1957) 

where 

and 

H = H , + H ,  (3.0 

He=rag f ~r*(X) ~r(x)dx + mx f ~s*(-'c) ~,s(x) dx 

+ i f [~2(x) + {V~(x)}~ + ~,2~(x)]dx (3.2a) 

= g  j" [q~.(x) ~.,(x).4(x) + eN*(x),/,,(x)A*(x)ldx (3.2b) / 6  

+ 8m~ j" ~ * ( x )  #~(x) dx 

The fields ~.-(X) and ~.~.(x) are those associated with the V and N particles 
respectively, and satisfy the usual equal time anticommutation relations. 
Note that we use the 4-vector notation x = (x, it). The field ~x )  is the 
scalar field associated with 0 particles, and ~.r) its canonically conjugate 
momentum density. We use the notation my, m.,. and ~u for the "physical" 
masses of the V, Nand 0 particles respectively, and ~mv for the V-particle 
mass renormalizafion counter term Alsot 

A(X)= ~ V ~  =kexp(ik.X) (3.3) 

where the ~karc defined through 

~ ( x ) = ~  t V'(2"oxQ) {~ ~xp(ik. x) + %* exp (-ik. x)} 

and 
k.x~k.x-~t; w-- 0k2 +/~2) I'2 

(3.4) 

The functionf(eo) is a cutoff function which is introduced in order to make 
all quantities finite and well defined. The coupling constant for the reaction 
V ~ NO is g. We assume that mr > mx +/~ so that the V-particle can decay 
spontaneously into N and 0. 

Consider the decay of a V-particle of 4-momentum p = (p, ipo) into an 
N and 0 particle of 4-momentum p" -- (p', ipo') and k -- Ok, ico) respectively, 
The lowest-order Feynman dhgram for this process is given in Fig. l(a). 

t ~ e  p~qe w,~  funaions ~ use are ~ormal~ed in a box of volume D. 
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Applying the well-known Feynman techniques, the S-matrix element fer 
this process is 

/(2W) 4g/'(w) o(4)- �9 S(~)(V--~ NO;po=r,v)=- ~ o  tp 4-k-p) (3.5) 

The total decay probability in time ~- is 

P(Po = mr; I/) = ~_ ~ IS( t ) (V-+  NO;p o =/tlv)l 2 

" " (3.6) 
. . j  

= r_~__{j.(m r _ mjv)}2V,[(mv_ m.,.)2 _/~z] ~. 

~mv / 
(a) Co) 

Figure l--(a) Lowest order Feynman diagram for decay of Y particIe, (b) V-particle 
lelf~grgy effect and corresponding mass coun~ertcrm effect. 

and the total decay rate 

1 
r(.oo -, m~; v)  - ; P ~ o  = m~; v) = ~ ~f(m~ - m~)}2v'[(m~- m~) 2 -  ~:] 

(3:/) 

Let us now evaluate F(p o = my; V) using relation (2.8). The only con- 
tribution of order g2 to <Po = m v ; V [ S -  llPo =mr;V)  comes from the 
Feynman diagrams of Fig. l(b) and is given by 

S(2)(V -+ V, po =mr) = (po=mv; V I S -  liP0 =my;  It) (3.8) 
- - i T { ~  (V;p0 - my) + 8mr} 

where 

I I  

Z (V;po) - 
1 

h 2 ~  ( p o - m e - o ~ + i c )  

- , ~  (V;po) + ~ ~ (v;po) 
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In the above, �9 is a positive, infinitesimal real number, and ~.. (V;po) and 
~t  (V;po) are both real and given by 

u 

g2 P ~/(r /~2){f(co)}2 J 
'V 'a(V;P~ 2 f {--~---~-~o-m-~s)~ au) (3.10a) 

2 ,  ( v ; p o )  = - ~ U ' O o  - m~,)}'x/f(po - m,O'  - ~,'] (3.10b) 

Pin equation O. 10a) denotes the principle value-. Substituting equations (3.8) 
and (3.9) into the right-hand side of relation (2.8) and using equation 
(3.10b), we find that 

I ~ o  = my; V) = - 2 ~ (v; .oo = my) = ~ )  {f(mv - m~,)} 2 

x V[(rnv - ms): - ~2] (3.1 I) 

which is identical with the result (3.7). 
As a generalization of the mass renormalization condition common for 

stable particles (Ram & Rosen, 1963; Schweber, 1961), it is very natural to 
choose the corresponding condition here as 

Im $(2) (V  ~ V;po = my) -- 0 (3 .12)  

This implies that 8my has to be. chosen such that 

~ .  (V;po =my) + 8my --0 (3.13) 

From relations (3.11) and (3.13), we see that 

Y. (V;Po = mv) = - {Smv -k i ~ -} (3.14) 

clearly demonstrating the 'common' origin of mass shifting and total decay 
rate. This idea is not really new and has been well known for a very long 
time (Heitler, 1954). 

In the absence of interaction, the V-particle propagator in momentum 
space is simply 

I (o) i 1 
(2~ ) , s  (V;po) = ( 2 ? , ) ' ( p o - ~ O , +  t�9 (3.15) 

where m~ )) is the bare V-particle mass. In the presence of interaction, the 
V-particle propagator will be modified. One can readily show that to second 
order in the coupling constant, the modified propagator is 

1 , i 1 
(2~.)4 S (V;pe) == (2~r)4 (p ~ , my) - {~ (V;p0) + 8my} (3.16) 
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Using the mass renorrnalization condition (3.13), and keeping terms to order 
g2 only, it is easy to show that in the vicinity ofp0 -- my 

where 

Zv 
Sv'(.l'o) = (3.17) 

(Po - my) + iF(P~ = my; V) 
2 

(V;po)j 

f fo-mv [pO-,mv 

and U(p 0 = m y ;  V) is simply given by equation (3.11) and represents the 
total decay rate of  the V-particle as calculated from relation (2.8) to second 
order in the coupling constant. If  we calculate the NO scattering cross-section 
it will be proportional to 

Jzvt 
IS'(V;po)l ~ 

(po_mv)2 + {F(Po2mv; V)}2 (3.19) 

for P0 close to my. The cross-section will therefore exhibit a resonance at 
Po = m~, with half width F(po = my; V), which is precisely the total decay 
rate of  the V-particle as calculated from relation (2.8). 

B. Unstable Spin 0 Particle with Arbitrary Interaction 
Consider an unstable spin 0 particle rr (not to be associated necessarily 

with the physical pion) of  physical mass m,  and arbitrary interaction. 
Applying relation (2.8), the total decay rate of  a ~r-particle of 4-momentum 
k = (k, i,,,) is 

/'(r rr) -- - 2 Re (k;,rl  S -  I lk ; r r )  (3.20) 
' r  

To second order in the interaction, the only contribution to 

<k;,,IS- l l k ; ~ >  

comes from the Feynman diagrams of  Fig. 2, and is given byt  

Ok;~rlS-- l lk ;~r)- - t~ '{~ (kZ=--m,,2;~r) + Am, 2} (3.21) 

t Since we work to second order in the coupling constant the state [k; ~r > is to be taken 
u the unperturbed state which is an eigenstate of the energy with eigenva/ue con 
Ok: + m~:P. 
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where Y. (k2;~r) represents the contribution of the self-energy 'blob' and 
~Jnt, 2 is the (mass) 2 renormalization counterterm for the ,r. Substituting 
equation (3.21) into relation (3.20), we find that 

where 

/ ' (o~;  ~r) = l ,~j (k2 --- - m~,2; 7r) (3.22) 

(k2; ~r) -- ~ x  (k"; ~r) + i ~ ,  (/<2; :~) 0.23) 

and ~x (/:2; ~r) and ~ (k2;~) are both real. Imposing as mass renormaliza- 
tion condition (Ram & Rosen, 1963; Schweber, 1961) 

Im ~k;~r[S- l lk;~ ')  = 0 (3.24) 

requires that we choose 

~m~ 2 = -~ ~Y~ (k 2 = - m,2; ~) (3.25) 

Figure 2--Second-order seW-energy effect for ~particle and corresponding counterterm 
effect. 

Combining relations (3.22), (3.23) and (3.25) gives 

(k :  -~ - m . : ;  ~r) = - {Am,, 2 - ioJF(oJ; ~r)} (3.26) 

clearly demonstrating the common origin of mass shifting and total decay 
ra te .  

We will now show that to second order in the coupling constant, the total 
decay rate as given by (3.22) is identical with the total decay rate defined in 
terms of the imaginary part of the propagator pole. 

To second order in the coupling constant, the modified 7r-propagator is 

-1 - i  1 
(2,0'  s ' & ; , 0  = (2,)" 0 , '  + m J )  - (Y~ 0 ~ ; , 0  + ,~mJ) (3.2"0 

where p == ( i ) ' tE) .  One can readi ly  show that fo r  E close to oJ 

$,(p2; ,r) ~ -Z,,12oJ (3.28) 
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where/"(oJ;n) is given by relation (3.22), and is precisely the total decay 
rate of the n-particle as calculated from relation (2.8). Also 

_ ,  

In any reaction in which the ~r-particle is produced as an intermediate state, 
the cross-section for E close to w will be proportional to 

lZ./ l 2 lS'O ';n)I' + , 

and will comequenfly exhibit a resonance of half width/"(a,;n) about 
~E == r 

C. Unstable Spin 1/2 Particle with Arbitrary Interaction 
Consider an unstable spin 112 particle n (not to be confused with the 

neutron) of physical mass m.. We shall assume that the interaction 

J 
Figure 3--Second-order self-energy effect for r,-p~icle and corresponding counterterm 

effect. 

responsible for the decay of the n-particle is invariant under the full, 
inhomogeneous Lorentz group, but is otherwise arbitrary. This excludes, 
for example, the weak decays of spin 1/2 particles like the neutron which 
violate parity conservation. Applying relation (2.8), the total decay rate of 
an n-particle of4-momentum k = (k,i~o) is 

/'(oJ; n) -- - -2Re 0k ;n [S -  11 k ;n)  O.31) 
,r 

To second order in the interaction, the only contribution to 

Ok;n[$- Ilk;n> 

comes from the Feynman diagrams of Fig. 3, and is given by 

<k;nlS- Ilk;n> =-irf~(k){~ (k;n)-Zlm,}u(k) (3.32) 
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where Y. (k;n) represents the contribution of  the self-energy 'blob' and 
,:In&, is the mass counterterm for the n-particle. The spinors u(k) and ~(k) = 
u*(k)),4 satisfy the free Dirac equation in momentum space, i.e., 

( k -  m,)u(k) = 0; ~(kXk-m,)  = 0 (3.33) 
where 

4 

t a - !  

We use the noncovar/ant normalization 

~(k) u(k) = ~ (3.34) 
(zp 

Because of the assumed invariance of  the interaction under the full in- 
homogeneous Lorentz group, one can show that (Schweber, 1961) 

Y_ (k;n) = .4 + (k - hi,) B + (k - nO:  ~r (3.35) 

where A and B are constants independent of k. Substituting equations 
0.32) and (3.35) into relation (3.31) and using equations (3.33) and (3.34), 
we find that 

F(~o;n) = - 2~m'A, 
(O 

where 
A = Aa + iA t 

and Aa and At are both re~]. 
Imposing as ma~ renormalization condition 

Im ~;n lS-  1 ! p;n> = 0 
we find that 

/Int, = AI 

Combining relat/ons (3.36), (3.37) and (3.39) gives 

0.36) 

(3.37) 

(3.38) 

(3.39) 

OJ 
A =,Jm. - i ~ F ( o ~ ; n )  (3.4O) 

which again points to the common origin o f  mass shifting and total decay 
rate. 

We will now demonstrate that to second order in the coupling constant, 
the total.decay rate as given by equation 0.36) is identical with the total 
decay rate defined in terms of  the imaginary part of the propagator pole. 

To second order in the coupling constant, the modified n-particle 
propagatoris 

i i ! 
(2=)* s~ ;n ) ' -  = (2,~)" (e - m.) - {Y_ (p;n)  - Am.} (3.41) 
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Using equations (3.35") and (3.39), one can readily show that in the vicinity 
of  E--  ca 

I 
$'(p;n)  oc 2bn.A, (3.42) 

2,0 

where oc denotes proportionality. It is therefore clear that the cross-section 
for a reaction in which the n-particle appears as an intermediate state will 
be proportional to 

in the vicinity of E= a,, and will therefore exhibit a resonance of half 
width/'(o~ ;n) at E = ~,,, where/'(~, ;,~) is the total decay rate ofthe n-particle 
as calculated from relation (2.8). 

4. Discussion 

It would seem that the definition (2.'0, and consequently also relation 
(2.8), is only well suited for unstable particles whose decay rates can be 
measured directly by observing the number of particles that have decayed 
after a certain time has elapsed. It is nevertheless feasible that relation (2.8) 
is more general than its derivation implies, and that it could be valid also 
for hadron resonances whose lifetimes are too short to be directly measured. 
Relations such as (3.14), (3.26) and (3.40) seem to give credence to such a 
Imss~ility, since the common origin of mass shifting and total decay rate 
is generally accep'.ed for all unstable particles, including hadron resonances. 
Since relation (2.8) includes both dynamic and kinematic effects, it is 
ideally suited for the important application of symmetry considerations. 
In fact, we have applied relation (2.8) to hadrons and derived (Ram, 1969) 
interesting relations among total decay rates of hadron resonances 
analogous to the Gell-Mann-Okubo formulae for masses. 

We would finally like to point out that the equality of the total decay rate 
as given by relation (2.8) and the total decay rate defined in terms of the 
imaginary part of the propagator pole serves as a 'demonstration" of the 
energy-time uncertainty relation for the decay of unstable particles. 
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